Picoflare jets power the solar wind emerging from a coronal hole on the Sun | Science
Picoflare jets power the solar wind emerging from a coronal hole on the Sun
L. P. Chitta https://orcid.org/0000-0002-9270-6785 chitta@mps.mpg.de, A. N. Zhukov https://orcid.org/0000-0002-2542-9810, D. Berghmans https://orcid.org/0000-0003-4052-9462, H. Peter https://orcid.org/0000-0001-9921-0937, S. Parenti https://orcid.org/0000-0003-1438-1310, S. Mandal https://orcid.org/0000-0002-7762-5629, R. Aznar Cuadrado https://orcid.org/0000-0003-1294-1257, U. Schühle https://orcid.org/0000-0001-6060-9078, L. Teriaca https://orcid.org/0000-0001-7298-2320, F. Auchère https://orcid.org/0000-0003-0972-7022, K. Barczynski https://orcid.org/0000-0001-7090-6180, É. Buchlin https://orcid.org/0000-0003-4290-1897, L. Harra https://orcid.org/0000-0001-9457-6200, E. Kraaikamp, D. M. Long https://orcid.org/0000-0003-3137-0277, L. Rodriguez https://orcid.org/0000-0002-6097-374X, C. Schwanitz https://orcid.org/0000-0002-7669-5078, P. J. Smith https://orcid.org/0000-0002-3281-4223, C. Verbeeck https://orcid.org/0000-0002-5022-4534, and D. B. Seaton https://orcid.org/0000-0002-0494-2025
Science
24 Aug 2023
Vol 381, Issue 6660
pp. 867-872
Editor’s summary
Plasma is constantly streaming away from the Sun, forming the solar wind. A likely source of this plasma is coronal holes, regions of the Sun’s corona with magnetic field lines that open outward. Chitta et al. observed a coronal hole in the extreme ultraviolet using the Solar Orbiter spacecraft and identifed several types of small-scale jets within it (see the Perspective by Ugarte-Urra and Wang). Large numbers of jets occurred during the observation, but each one lasted only a few dozen seconds. The authors calculated that the jets provide enough energy and plasma to supply a large fraction of the solar wind, at least during quiet periods. —Keith T. Smith
Abstract
Coronal holes are areas on the Sun with open magnetic field lines. They are a source region of the solar wind, but how the wind emerges from coronal holes is not known. We observed a coronal hole using the Extreme Ultraviolet Imager on the Solar Orbiter spacecraft. We identified jets on scales of a few hundred kilometers, which last 20 to 100 seconds and reach speeds of ~100 kilometers per second. The jets are powered by magnetic reconnection and have kinetic energy in the picoflare range. They are intermittent but widespread within the observed coronal hole. We suggest that such picoflare jets could produce enough high-temperature plasma to sustain the solar wind and that the wind emerges from coronal holes as a highly intermittent outflow at small scales.
Get full access to this article
View all available purchase options and get full access to this article.
Supplementary Materials
This PDF file includes:
Other Supplementary Material for this manuscript includes the following:
- Download
- 99.94 MB
References and Notes
1
E. N. Parker, Dynamics of the Interplanetary Gas and Magnetic Fields. Astrophys. J.128, 664 (1958).
2
M. Neugebauer, C. W. Snyder, Solar Plasma Experiment. Science138, 1095–1097 (1962).
3
J. Woch, W. I. Axford, U. Mall, B. Wilken, S. Livi, J. Geiss, G. Gloeckler, R. J. Forsyth, SWICS/Ulysses observations: The three-dimensional structure of the heliosphere in the declining/minimum phase of the solar cycle. Geophys. Res. Lett.24, 2885–2888 (1997).
4
D. J. McComas, B. L. Barraclough, H. O. Funsten, J. T. Gosling, E. Santiago-Muñoz, R. M. Skoug, B. E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res.105, 10419–10433 (2000).
5
S. R. Cranmer, Coronal Holes. Living Rev. Sol. Phys.6, 3 (2009).
6
Y.-M. Wang, Y.-K. Ko, Observations of Slow Solar Wind from Equatorial Coronal Holes. Astrophys. J.880, 146 (2019).
7
S. D. Bale, S. T. Badman, J. W. Bonnell, T. A. Bowen, D. Burgess, A. W. Case, C. A. Cattell, B. D. G. Chandran, C. C. Chaston, C. H. K. Chen, J. F. Drake, T. D. de Wit, J. P. Eastwood, R. E. Ergun, W. M. Farrell, C. Fong, K. Goetz, M. Goldstein, K. A. Goodrich, P. R. Harvey, T. S. Horbury, G. G. Howes, J. C. Kasper, P. J. Kellogg, J. A. Klimchuk, K. E. Korreck, V. V. Krasnoselskikh, S. Krucker, R. Laker, D. E. Larson, R. J. MacDowall, M. Maksimovic, D. M. Malaspina, J. Martinez-Oliveros, D. J. McComas, N. Meyer-Vernet, M. Moncuquet, F. S. Mozer, T. D. Phan, M. Pulupa, N. E. Raouafi, C. Salem, D. Stansby, M. Stevens, A. Szabo, M. Velli, T. Woolley, J. R. Wygant, Highly structured slow solar wind emerging from an equatorial coronal hole. Nature576, 237–242 (2019).
8
G. Poletto, Solar Coronal Plumes. Living Rev. Sol. Phys.12, 7 (2015).
9
N. M. Viall, J. E. Borovsky, Nine Outstanding Questions of Solar Wind Physics. J. Geophys. Res. Space Phys.125, JA026005 (2020).
10
S. R. Cranmer, A. A. van Ballegooijen, R. J. Edgar, Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence. Astrophys. J. Suppl. Ser.171, 520–551 (2007).
11
T. Matsumoto, T. K. Suzuki, Connecting the Sun and the Solar Wind: The First 2.5-dimensional Self-consistent MHD Simulation under the Alfvén Wave Scenario. Astrophys. J.749, 8 (2012).
12
M. Shoda, B. D. G. Chandran, S. R. Cranmer, Turbulent Generation of Magnetic Switchbacks in the Alfvénic Solar Wind. Astrophys. J.915, 52 (2021).
13
C.-Y. Tu, C. Zhou, E. Marsch, L.-D. Xia, L. Zhao, J.-X. Wang, K. Wilhelm, Solar wind origin in coronal funnels. Science308, 519–523 (2005).
14
L. Yang, J. He, H. Peter, C. Tu, W. Chen, L. Zhang, E. Marsch, L. Wang, X. Feng, L. Yan, Injection of Plasma into the Nascent Solar Wind via Reconnection Driven by Supergranular Advection. Astrophys. J.770, 6 (2013).
15
Y.-M. Wang, Small-scale Flux Emergence, Coronal Hole Heating, and Flux-tube Expansion: A Hybrid Solar Wind Model. Astrophys. J.904, 199 (2020).
16
H. Tian, E. E. DeLuca, S. R. Cranmer, B. De Pontieu, H. Peter, J. Martínez-Sykora, L. Golub, S. McKillop, K. K. Reeves, M. P. Miralles, P. McCauley, S. Saar, P. Testa, M. Weber, N. Murphy, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T. D. Tarbell, J. P. Wuelser, L. Kleint, C. Kankelborg, S. Jaeggli, M. Carlsson, V. Hansteen, S. W. McIntosh, Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science346, 1255711 (2014).
17
P. Kayshap, K. Murawski, A. K. Srivastava, B. N. Dwivedi, Rotating network jets in the quiet Sun as observed by IRIS. Astron. Astrophys.616, A99 (2018).
18
J. Gorman, L. P. Chitta, H. Peter, Spectroscopic observation of a transition region network jet. Astron. Astrophys.660, A116 (2022).
19
H. Tian, S. W. McIntosh, S. R. Habbal, J. He, Observation of High-speed Outflow on Plume-like Structures of the Quiet Sun and Coronal Holes with Solar Dynamics Observatory/Atmospheric Imaging Assembly. Astrophys. J.736, 130 (2011).
20
S. Pucci, G. Poletto, A. C. Sterling, M. Romoli, Birth, Life, and Death of a Solar Coronal Plume. Astrophys. J.793, 86 (2014).
21
N.-E. Raouafi, G. Stenborg, Role of Transients in the Sustainability of Solar Coronal Plumes. Astrophys. J.787, 118 (2014).
22
V. M. Uritsky, C. E. DeForest, J. T. Karpen, C. R. DeVore, P. Kumar, N. E. Raouafi, P. F. Wyper, Plumelets: Dynamic Filamentary Structures in Solar Coronal Plumes. Astrophys. J.907, 1 (2021).
23
P. Kumar, J. T. Karpen, V. M. Uritsky, C. E. Deforest, N. E. Raouafi, C. Richard DeVore, Quasi-periodic Energy Release and Jets at the Base of Solar Coronal Plumes. Astrophys. J.933, 21 (2022).
24
N. E. Raouafi, G. Stenborg, D. B. Seaton, H. Wang, J. Wang, C. E. DeForest, S. D. Bale, J. F. Drake, V. M. Uritsky, J. T. Karpen, C. R. DeVore, A. C. Sterling, T. S. Horbury, L. K. Harra, S. Bourouaine, J. C. Kasper, P. Kumar, T. D. Phan, M. Velli, Magnetic Reconnection as the Driver of the Solar Wind. Astrophys. J.945, 28 (2023).
25
I. A. Ahmad, G. L. Withbroe, EUV analysis of polar plumes. Sol. Phys.53, 397–408 (1977).
26
Y.-M. Wang, Polar Plumes and the Solar Wind. Astrophys. J.435, L153 (1994).
27
S. Patsourakos, J.-C. Vial, Outflow velocity of interplume regions at the base of Polar Coronal Holes. Astron. Astrophys.359, L1–L4 (2000).
28
L. Teriaca, G. Poletto, M. Romoli, D. A. Biesecker, The Nascent Solar Wind: Origin and Acceleration. Astrophys. J.588, 566–577 (2003).
29
N. Fargette, B. Lavraud, A. P. Rouillard, V. Réville, T. Dudok De Wit, C. Froment, J. S. Halekas, T. D. Phan, D. M. Malaspina, S. D. Bale, J. C. Kasper, P. Louarn, A. W. Case, K. E. Korreck, D. E. Larson, M. Pulupa, M. L. Stevens, P. L. Whittlesey, M. Berthomier, Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophys. J.919, 96 (2021).
30
P. Rochus, F. Auchère, D. Berghmans, L. Harra, W. Schmutz, U. Schühle, P. Addison, T. Appourchaux, R. Aznar Cuadrado, D. Baker, J. Barbay, D. Bates, A. BenMoussa, M. Bergmann, C. Beurthe, B. Borgo, K. Bonte, M. Bouzit, L. Bradley, V. Büchel, E. Buchlin, J. Büchner, F. Cabé, L. Cadiergues, M. Chaigneau, B. Chares, C. Choque Cortez, P. Coker, M. Condamin, S. Coumar, W. Curdt, J. Cutler, D. Davies, G. Davison, J.-M. Defise, G. Del Zanna, F. Delmotte, V. Delouille, L. Dolla, C. Dumesnil, F. Dürig, R. Enge, S. François, J.-J. Fourmond, J.-M. Gillis, B. Giordanengo, S. Gissot, L. M. Green, N. Guerreiro, A. Guilbaud, M. Gyo, M. Haberreiter, A. Hafiz, M. Hailey, J.-P. Halain, J. Hansotte, C. Hecquet, K. Heerlein, M.-L. Hellin, S. Hemsley, A. Hermans, V. Hervier, J.-F. Hochedez, Y. Houbrechts, K. Ihsan, L. Jacques, A. Jérôme, J. Jones, M. Kahle, T. Kennedy, M. Klaproth, M. Kolleck, S. Koller, E. Kotsialos, E. Kraaikamp, P. Langer, A. Lawrenson, J.-C. Le Clech’, C. Lenaerts, S. Liebecq, D. Linder, D. M. Long, B. Mampaey, D. Markiewicz-Innes, B. Marquet, E. Marsch, S. Matthews, E. Mazy, A. Mazzoli, S. Meining, E. Meltchakov, R. Mercier, S. Meyer, M. Monecke, F. Monfort, G. Morinaud, F. Moron, L. Mountney, R. Müller, B. Nicula, S. Parenti, H. Peter, D. Pfiffner, A. Philippon, I. Phillips, J.-Y. Plesseria, E. Pylyser, F. Rabecki, M.-F. Ravet-Krill, J. Rebellato, E. Renotte, L. Rodriguez, S. Roose, J. Rosin, L. Rossi, P. Roth, F. Rouesnel, M. Roulliay, A. Rousseau, K. Ruane, J. Scanlan, P. Schlatter, D. B. Seaton, K. Silliman, S. Smit, P. J. Smith, S. K. Solanki, M. Spescha, A. Spencer, K. Stegen, Y. Stockman, N. Szwec, C. Tamiatto, J. Tandy, L. Teriaca, C. Theobald, I. Tychon, L. van Driel-Gesztelyi, C. Verbeeck, J.-C. Vial, S. Werner, M. J. West, D. Westwood, T. Wiegelmann, G. Willis, B. Winter, A. Zerr, X. Zhang, A. N. Zhukov, The Solar Orbiter EUI instrument: The Extreme Ultraviolet Imager. Astron. Astrophys.642, A8 (2020).
31
D. Müller, O. C. St. Cyr, I. Zouganelis, H. R. Gilbert, R. Marsden, T. Nieves-Chinchilla, E. Antonucci, F. Auchère, D. Berghmans, T. S. Horbury, R. A. Howard, S. Krucker, M. Maksimovic, C. J. Owen, P. Rochus, J. Rodriguez-Pacheco, M. Romoli, S. K. Solanki, R. Bruno, M. Carlsson, A. Fludra, L. Harra, D. M. Hassler, S. Livi, P. Louarn, H. Peter, U. Schühle, L. Teriaca, J. C. del Toro Iniesta, R. F. Wimmer-Schweingruber, E. Marsch, M. Velli, A. De Groof, A. Walsh, D. Williams, The Solar Orbiter mission: Science overview. Astron. Astrophys.642, A1 (2020).
32
Materials and methods are available as supplementary materials.
33
F. Moreno-Insertis, K. Galsgaard, I. Ugarte-Urra, Jets in Coronal Holes: Hinode Observations and Three-dimensional Computer Modeling. Astrophys. J.673, L211–L214 (2008).
34
K. Shibata, T. Nakamura, T. Matsumoto, K. Otsuji, T. J. Okamoto, N. Nishizuka, T. Kawate, H. Watanabe, S. Nagata, S. Ueno, R. Kitai, S. Nozawa, S. Tsuneta, Y. Suematsu, K. Ichimoto, T. Shimizu, Y. Katsukawa, T. D. Tarbell, T. E. Berger, B. W. Lites, R. A. Shine, A. M. Title, Chromospheric anemone jets as evidence of ubiquitous reconnection. Science318, 1591–1594 (2007).
35
A. C. Sterling, R. L. Moore, D. A. Falconer, M. Adams, Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature523, 437–440 (2015).
36
S. Mandal, L. P. Chitta, H. Peter, S. K. Solanki, R. A. Cuadrado, L. Teriaca, U. Schühle, D. Berghmans, F. Auchère, A highly dynamic small-scale jet in a polar coronal hole. Astron. Astrophys.664, A28 (2022).
37
L. P. Chitta, A. R. C. Sukarmadji, L. Rouppe van der Voort, H. Peter, Energetics of magnetic transients in a solar active region plage. Astron. Astrophys.623, A176 (2019).
38
L. D. Xia, E. Marsch, W. Curdt, On the outflow in an equatorial coronal hole. Astron. Astrophys.399, L5–L9 (2003).
39
G. L. Withbroe, The Temperature Structure, Mass, and Energy Flow in the Corona and Inner Solar Wind. Astrophys. J.325, 442 (1988).
40
E. N. Parker, Nanoflares and the Solar X-Ray Corona. Astrophys. J.330, 474 (1988).
41
K. L. Harvey, F. Recely, Polar Coronal Holes During Cycles 22 and 23. Sol. Phys.211, 31–52 (2002).
42
T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E. E. Deluca, L. L. Lundquist, S. Tsuneta, L. K. Harra, Y. Katsukawa, M. Kubo, H. Hara, K. Matsuzaki, M. Shimojo, J. A. Bookbinder, L. Golub, K. E. Korreck, Y. Su, K. Shibasaki, T. Shimizu, I. Nakatani, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science318, 1585–1588 (2007).
43
G. A. Doschek, J. T. Mariska, H. P. Warren, C. M. Brown, J. L. Culhane, H. Hara, T. Watanabe, P. R. Young, H. E. Mason, Nonthermal Velocities in Solar Active Regions Observed with the Extreme-Ultraviolet Imaging Spectrometer on Hinode. Astrophys. J.667, L109–L112 (2007).
44
L. K. Harra, T. Sakao, C. H. Mandrini, H. Hara, S. Imada, P. R. Young, L. van Driel-Gesztelyi, D. Baker, Outflows at the Edges of Active Regions: Contribution to Solar Wind Formation?Astrophys. J.676, L147–L150 (2008).
45
D. H. Brooks, L. Harra, S. D. Bale, K. Barczynski, C. Mandrini, V. Polito, H. P. Warren, The Formation and Lifetime of Outflows in a Solar Active Region. Astrophys. J.917, 25 (2021).
46
Y.-M. Wang, in Cool Stars, Stellar Systems, and the Sun, R. A. Donahue, J. A. Bookbinder, Eds., vol. 154 of Astronomical Society of the Pacific Conference Series (1998), pp. 131–152.
47
S. Parhi, S. T. Suess, M. Sulkanen, Can Kelvin-Helmholtz instabilities of jet-like structures and plumes cause solar wind fluctuations at 1 AU? J. Geophys. Res.104, 14781–14787 (1999).
48
J. Andries, M. Goossens, Kelvin-Helmholtz instabilities and resonant flow instabilities for a coronal plume model with plasma pressure. Astron. Astrophys.368, 1083–1094 (2001).
49
Th. Roudier, R. Muller, Structure of the solar granulation. Sol. Phys.107, 11–26 (1986).
50
G. W. Simon, N. O. Weiss, Supergranules and the Hydrogen Convection Zone. Z. Astrophys.69, 435–450 (1968).
51
B. Mampaey, F. Verbeeck, K. Stegen, E. Kraaikamp, S. Gissot, F. Auchere, D. Berghmans, SolO/EUI Data Release 5.0 2022-04 (Royal Observatory of Belgium, 2022); https://doi.org/10.24414/2qfw-tr95.
52
I. Zouganelis, A. De Groof, A. P. Walsh, D. R. Williams, D. Müller, O. C. St Cyr, F. Auchère, D. Berghmans, A. Fludra, T. S. Horbury, R. A. Howard, S. Krucker, M. Maksimovic, C. J. Owen, J. Rodríguez-Pacheco, M. Romoli, S. K. Solanki, C. Watson, L. Sanchez, J. Lefort, P. Osuna, H. R. Gilbert, T. Nieves-Chinchilla, L. Abbo, O. Alexandrova, A. Anastasiadis, V. Andretta, E. Antonucci, T. Appourchaux, A. Aran, C. N. Arge, G. Aulanier, D. Baker, S. D. Bale, M. Battaglia, L. Bellot Rubio, A. Bemporad, M. Berthomier, K. Bocchialini, X. Bonnin, A. S. Brun, R. Bruno, E. Buchlin, J. Büchner, R. Bucik, F. Carcaboso, R. Carr, I. Carrasco-Blázquez, B. Cecconi, I. Cernuda Cangas, C. H. K. Chen, L. P. Chitta, T. Chust, K. Dalmasse, R. D’Amicis, V. Da Deppo, R. De Marco, S. Dolei, L. Dolla, T. Dudok de Wit, L. van Driel-Gesztelyi, J. P. Eastwood, F. Espinosa Lara, L. Etesi, A. Fedorov, F. Félix-Redondo, S. Fineschi, B. Fleck, D. Fontaine, N. J. Fox, A. Gandorfer, V. Génot, M. K. Georgoulis, S. Gissot, A. Giunta, L. Gizon, R. Gómez-Herrero, C. Gontikakis, G. Graham, L. Green, T. Grundy, M. Haberreiter, L. K. Harra, D. M. Hassler, J. Hirzberger, G. C. Ho, G. Hurford, D. Innes, K. Issautier, A. W. James, N. Janitzek, M. Janvier, N. Jeffrey, J. Jenkins, Y. Khotyaintsev, K.-L. Klein, E. P. Kontar, I. Kontogiannis, C. Krafft, V. Krasnoselskikh, M. Kretzschmar, N. Labrosse, A. Lagg, F. Landini, B. Lavraud, I. Leon, S. T. Lepri, G. R. Lewis, P. Liewer, J. Linker, S. Livi, D. M. Long, P. Louarn, O. Malandraki, S. Maloney, V. Martinez-Pillet, M. Martinovic, A. Masson, S. Matthews, L. Matteini, N. Meyer-Vernet, K. Moraitis, R. J. Morton, S. Musset, G. Nicolaou, A. Nindos, H. O’Brien, D. Orozco Suarez, M. Owens, M. Pancrazzi, A. Papaioannou, S. Parenti, E. Pariat, S. Patsourakos, D. Perrone, H. Peter, R. F. Pinto, C. Plainaki, D. Plettemeier, S. P. Plunkett, J. M. Raines, N. Raouafi, H. Reid, A. Retino, L. Rezeau, P. Rochus, L. Rodriguez, L. Rodriguez-Garcia, M. Roth, A. P. Rouillard, F. Sahraoui, C. Sasso, J. Schou, U. Schühle, L. Sorriso-Valvo, J. Soucek, D. Spadaro, M. Stangalini, D. Stansby, M. Steller, A. Strugarek, Š. Štverák, R. Susino, D. Telloni, C. Terasa, L. Teriaca, S. Toledo-Redondo, J. C. del Toro Iniesta, G. Tsiropoula, A. Tsounis, K. Tziotziou, F. Valentini, A. Vaivads, A. Vecchio, M. Velli, C. Verbeeck, A. Verdini, D. Verscharen, N. Vilmer, A. Vourlidas, R. Wicks, R. F. Wimmer-Schweingruber, T. Wiegelmann, P. R. Young, A. N. Zhukov, The Solar Orbiter Science Activity Plan: Translating solar and heliospheric physics questions into action. Astron. Astrophys.642, A3 (2020).
53
L. P. Chitta, H. Peter, S. Parenti, D. Berghmans, F. Auchère, S. K. Solanki, R. Aznar Cuadrado, U. Schühle, L. Teriaca, S. Mandal, K. Barczynski, É. Buchlin, L. Harra, E. Kraaikamp, D. M. Long, L. Rodriguez, C. Schwanitz, P. J. Smith, C. Verbeeck, A. N. Zhukov, W. Liu, M. C. M. Cheung, Solar coronal heating from small-scale magnetic braids. Astron. Astrophys.667, A166 (2022).
54
C. B. Markwardt, in Astronomical Data Analysis Software and Systems XVIII, D. A. Bohlender, D. Durand, P. Dowler, Eds., vol. 411 of Astronomical Society of the Pacific Conference Series (2009), pp. 251–254.
55
S. Gissot, F. Aucháre, D. Berghmans, B. Giordanengo, A. BenMoussa, J. Rebellato, L. Harra, D. Long, P. Rochus, U. Schühle, R. Aznar Cuadrado, F. Delmotte, C. Dumesnil, A. Gottwald, J.-P. Halain, K. Heerlein, M.-L. Hellin, A. Hermans, L. Jacques, E. Kraaikamp, R. Mercier, P. Rochus, P. J. Smith, L. Teriaca, C. Verbeeck, Initial radiometric calibration of the High-Resolution EUV Imager (HRIEUV) of the Extreme Ultraviolet Imager (EUI) instrument onboard Solar Orbiter. arXiv:2307.14182 [astro-ph.SR] (2023).
56
J.-L. Starck, F. Murtagh, Image restoration with noise suppression using the wavelet transform. Astron. Astrophys.288, 342–348 (1994).
57
G. A. Doschek, H. P. Warren, J. M. Laming, J. T. Mariska, K. Wilhelm, P. Lemaire, U. Schühle, T. G. Moran, Electron Densities in the Solar Polar Coronal Holes from Density-Sensitive Line Ratios of Si VIII and S X. Astrophys. J. Lett.482, L109–L112 (1997).
58
K. Wilhelm, Solar coronal-hole plasma densities and temperatures. Astron. Astrophys.455, 697–708 (2006).
59
H. N. Smitha, L. S. Anusha, S. K. Solanki, T. L. Riethmüller, Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data. Astrophys. J. Suppl. Ser.229, 17 (2017).
60
L. P. Chitta, H. Peter, S. K. Solanki, Nature of the energy source powering solar coronal loops driven by nanoflares. Astron. Astrophys.615, L9 (2018).
61
E. R. Priest, L. P. Chitta, P. Syntelis, A Cancellation Nanoflare Model for Solar Chromospheric and Coronal Heating. Astrophys. J. Lett.862, L24 (2018).
62
V. Upendran, D. Tripathi, On the Formation of Solar Wind and Switchbacks, and Quiet Sun Heating. Astrophys. J.926, 138 (2022).
63
S. R. Cranmer, Low-frequency Alfvén Waves Produced by Magnetic Reconnection in the Sun’s Magnetic Carpet. Astrophys. J.862, 6 (2018).
64
E. Marsch, Kinetic Physics of the Solar Corona and Solar Wind. Living Rev. Sol. Phys.3, 1 (2006).
65
A. R. Paraschiv, A. Bemporad, A. C. Sterling, Physical properties of solar polar jets: A statistical study with Hinode XRT data. Astron. Astrophys.579, A96 (2015).
66
L. P. Chitta, D. B. Seaton, C. Downs, C. E. DeForest, A. K. Higginson, Direct observations of a complex coronal web driving highly structured slow solar wind. Nat. Astron.7, 133–141 (2023).
67
G. R. Gupta, L. Teriaca, E. Marsch, S. K. Solanki, D. Banerjee, Spectroscopic observations of propagating disturbances in a polar coronal hole: Evidence of slow magneto-acoustic waves. Astron. Astrophys.546, A93 (2012).
68
S. D. Bale, J. F. Drake, M. D. McManus, M. I. Desai, S. T. Badman, D. E. Larson, M. Swisdak, T. S. Horbury, N. E. Raouafi, T. Phan, M. Velli, D. J. McComas, C. M. S. Cohen, D. Mitchell, O. Panasenco, J. C. Kasper, Interchange reconnection as the source of the fast solar wind within coronal holes. Nature618, 252–256 (2023).
69
T. Van Doorsselaere, N. Wardle, G. Del Zanna, K. Jansari, E. Verwichte, V. M. Nakariakov, The First Measurement of the Adiabatic Index in the Solar Corona Using Time-dependent Spectroscopy of Hinode/EIS Observations. Astrophys. J. Lett.727, L32 (2011).
70
J. W. Cirtain, L. Golub, L. Lundquist, A. van Ballegooijen, A. Savcheva, M. Shimojo, E. Deluca, S. Tsuneta, T. Sakao, K. Reeves, M. Weber, R. Kano, N. Narukage, K. Shibasaki, Evidence for Alfvén waves in solar x-ray jets. Science318, 1580–1582 (2007).
71
U. V. Möstl, M. Temmer, A. M. Veronig, The Kelvin-Helmholtz Instability at Coronal Mass Ejection Boundaries in the Solar Corona: Observations and 2.5D MHD Simulations. Astrophys. J. Lett.766, L12 (2013).
72
L. P. Chitta, E. R. Priest, X. Cheng, From Formation to Disruption: Observing the Multiphase Evolution of a Solar Flare Current Sheet. Astrophys. J.911, 133 (2021).
73
X. Li, J. Zhang, S. Yang, Y. Hou, R. Erdélyi, Observing Kelvin-Helmholtz instability in solar blowout jet. Sci. Rep.8, 8136 (2018).
74
P. Antolin, T. J. Okamoto, B. De Pontieu, H. Uitenbroek, T. Van Doorsselaere, T. Yokoyama, Resonant Absorption of Transverse Oscillations and Associated Heating in a Solar Prominence. II. Numerical Aspects. Astrophys. J.809, 72 (2015).
75
T. A. Howson, I. De Moortel, P. Antolin, Energetics of the Kelvin-Helmholtz instability induced by transverse waves in twisted coronal loops. Astron. Astrophys.607, A77 (2017).
Information & Authors
Information
Published In
Science
Volume 381 | Issue 6660
25 August 2023
Copyright
Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Article versions
Submission history
Received: 25 August 2022
Accepted: 14 July 2023
Published in print: 25 August 2023
Permissions
Request permissions for this article.
Acknowledgments
Solar Orbiter is a space mission with international collaboration between ESA and NASA, operated by ESA. The EUI instrument was built by CSL, IAS, MPS, MSSL/UCL, PMOD/WRC, ROB, and LCF/IO with funding from the Belgian Federal Science Policy Office (BELSPO/PRODEX PEA 4000134088), the Centre National d’Etudes Spatiales (CNES), the UK Space Agency (UKSA), the Bundesministerium für Wirtschaft und Energie (BMWi) through the Deutsches Zentrum für Luft- und Raumfahrt (DLR), and the Swiss Space Office (SSO). This research has made use of NASA’s Astrophysics Data System.
Funding: L.P.C. acknowledges funding by the European Union (ERC, ORIGIN, 101039844). S.P. acknowledges funding by CNES through the Multi Experiment Data & Operation Center (MEDOC). D.M.L. thanks the Science and Technology Facilities Council for the award of an Ernest Rutherford Fellowship (ST/R003246/1). A.N.Z., D.B., E.K., L.R., and C.V. thank the Belgian Federal Science Policy Office (BELSPO) for the provision of financial support in the framework of the PRODEX Programme of the European Space Agency (ESA) under contract nos. 4000134474 and 4000136424.
Author contributions: L.P.C. led the study and data analysis and wrote the manuscript with inputs from A.N.Z., D.B., H.P., S.P., S.M., R.A.C., U.S., L.T., É.B., D.M.L., and D.B.S. F.A., E.K., and C.V. contributed to data reduction. A.N.Z. led the Solar Orbiter observing campaign. D.B. is the principal investigator of EUI. All authors discussed and interpreted the results.
Competing interests: The authors declare no competing interests.
Data and materials availability: The HRIEUV level-2 data are archived by the Royal Observatory of Belgium (51). We used observations in the time range of 30 March 2022 04:30 to 05:00 UT (files from solo_L2_eui-hrieuvnon-image_20220330T043000227_V01.fits to solo_L2_eui-hrieuvnon-image_20220330T045957224_V01.fits). The data can alternatively be retrieved from ESA’s Solar Orbiter Archive https://soar.esac.esa.int/soar/ using the same time range and the Solar Orbiter Observing Plan (SOOP) (52) name “R_SMALL_HRES_MCAD_Polar-Observations.”
License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse. This research was funded in whole or in part by the European Union through Horizon Europe (grant no. 101039844), a cOAlition S organization. The author will make the Author Accepted Manuscript (AAM) version available under a CC BY public copyright license.
Authors
Affiliations
E. Kraaikamp
Funding Information
Science Technology and Facilities Council: ST/R003246/1
Notes
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Cite as
- L. P. Chitta et al.
,
Picoflare jets power the solar wind emerging from a coronal hole on the Sun.Science381,867-872(2023).DOI:10.1126/science.ade5801
Export citation
Select the format you want to export the citation of this publication.
Cited by
Tables
Check Access
Check Access
Check Access
References
References
1
E. N. Parker, Dynamics of the Interplanetary Gas and Magnetic Fields. Astrophys. J.128, 664 (1958).
2
M. Neugebauer, C. W. Snyder, Solar Plasma Experiment. Science138, 1095–1097 (1962).
3
J. Woch, W. I. Axford, U. Mall, B. Wilken, S. Livi, J. Geiss, G. Gloeckler, R. J. Forsyth, SWICS/Ulysses observations: The three-dimensional structure of the heliosphere in the declining/minimum phase of the solar cycle. Geophys. Res. Lett.24, 2885–2888 (1997).
4
D. J. McComas, B. L. Barraclough, H. O. Funsten, J. T. Gosling, E. Santiago-Muñoz, R. M. Skoug, B. E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res.105, 10419–10433 (2000).
5
S. R. Cranmer, Coronal Holes. Living Rev. Sol. Phys.6, 3 (2009).
6
Y.-M. Wang, Y.-K. Ko, Observations of Slow Solar Wind from Equatorial Coronal Holes. Astrophys. J.880, 146 (2019).
7
S. D. Bale, S. T. Badman, J. W. Bonnell, T. A. Bowen, D. Burgess, A. W. Case, C. A. Cattell, B. D. G. Chandran, C. C. Chaston, C. H. K. Chen, J. F. Drake, T. D. de Wit, J. P. Eastwood, R. E. Ergun, W. M. Farrell, C. Fong, K. Goetz, M. Goldstein, K. A. Goodrich, P. R. Harvey, T. S. Horbury, G. G. Howes, J. C. Kasper, P. J. Kellogg, J. A. Klimchuk, K. E. Korreck, V. V. Krasnoselskikh, S. Krucker, R. Laker, D. E. Larson, R. J. MacDowall, M. Maksimovic, D. M. Malaspina, J. Martinez-Oliveros, D. J. McComas, N. Meyer-Vernet, M. Moncuquet, F. S. Mozer, T. D. Phan, M. Pulupa, N. E. Raouafi, C. Salem, D. Stansby, M. Stevens, A. Szabo, M. Velli, T. Woolley, J. R. Wygant, Highly structured slow solar wind emerging from an equatorial coronal hole. Nature576, 237–242 (2019).
8
G. Poletto, Solar Coronal Plumes. Living Rev. Sol. Phys.12, 7 (2015).
9
N. M. Viall, J. E. Borovsky, Nine Outstanding Questions of Solar Wind Physics. J. Geophys. Res. Space Phys.125, JA026005 (2020).
10
S. R. Cranmer, A. A. van Ballegooijen, R. J. Edgar, Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence. Astrophys. J. Suppl. Ser.171, 520–551 (2007).
11
T. Matsumoto, T. K. Suzuki, Connecting the Sun and the Solar Wind: The First 2.5-dimensional Self-consistent MHD Simulation under the Alfvén Wave Scenario. Astrophys. J.749, 8 (2012).
12
M. Shoda, B. D. G. Chandran, S. R. Cranmer, Turbulent Generation of Magnetic Switchbacks in the Alfvénic Solar Wind. Astrophys. J.915, 52 (2021).
13
C.-Y. Tu, C. Zhou, E. Marsch, L.-D. Xia, L. Zhao, J.-X. Wang, K. Wilhelm, Solar wind origin in coronal funnels. Science308, 519–523 (2005).
14
L. Yang, J. He, H. Peter, C. Tu, W. Chen, L. Zhang, E. Marsch, L. Wang, X. Feng, L. Yan, Injection of Plasma into the Nascent Solar Wind via Reconnection Driven by Supergranular Advection. Astrophys. J.770, 6 (2013).
15
Y.-M. Wang, Small-scale Flux Emergence, Coronal Hole Heating, and Flux-tube Expansion: A Hybrid Solar Wind Model. Astrophys. J.904, 199 (2020).
16
H. Tian, E. E. DeLuca, S. R. Cranmer, B. De Pontieu, H. Peter, J. Martínez-Sykora, L. Golub, S. McKillop, K. K. Reeves, M. P. Miralles, P. McCauley, S. Saar, P. Testa, M. Weber, N. Murphy, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T. D. Tarbell, J. P. Wuelser, L. Kleint, C. Kankelborg, S. Jaeggli, M. Carlsson, V. Hansteen, S. W. McIntosh, Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science346, 1255711 (2014).
17
P. Kayshap, K. Murawski, A. K. Srivastava, B. N. Dwivedi, Rotating network jets in the quiet Sun as observed by IRIS. Astron. Astrophys.616, A99 (2018).
18
J. Gorman, L. P. Chitta, H. Peter, Spectroscopic observation of a transition region network jet. Astron. Astrophys.660, A116 (2022).
19
H. Tian, S. W. McIntosh, S. R. Habbal, J. He, Observation of High-speed Outflow on Plume-like Structures of the Quiet Sun and Coronal Holes with Solar Dynamics Observatory/Atmospheric Imaging Assembly. Astrophys. J.736, 130 (2011).
20
S. Pucci, G. Poletto, A. C. Sterling, M. Romoli, Birth, Life, and Death of a Solar Coronal Plume. Astrophys. J.793, 86 (2014).
21
N.-E. Raouafi, G. Stenborg, Role of Transients in the Sustainability of Solar Coronal Plumes. Astrophys. J.787, 118 (2014).
22
V. M. Uritsky, C. E. DeForest, J. T. Karpen, C. R. DeVore, P. Kumar, N. E. Raouafi, P. F. Wyper, Plumelets: Dynamic Filamentary Structures in Solar Coronal Plumes. Astrophys. J.907, 1 (2021).
23
P. Kumar, J. T. Karpen, V. M. Uritsky, C. E. Deforest, N. E. Raouafi, C. Richard DeVore, Quasi-periodic Energy Release and Jets at the Base of Solar Coronal Plumes. Astrophys. J.933, 21 (2022).
24
N. E. Raouafi, G. Stenborg, D. B. Seaton, H. Wang, J. Wang, C. E. DeForest, S. D. Bale, J. F. Drake, V. M. Uritsky, J. T. Karpen, C. R. DeVore, A. C. Sterling, T. S. Horbury, L. K. Harra, S. Bourouaine, J. C. Kasper, P. Kumar, T. D. Phan, M. Velli, Magnetic Reconnection as the Driver of the Solar Wind. Astrophys. J.945, 28 (2023).
25
I. A. Ahmad, G. L. Withbroe, EUV analysis of polar plumes. Sol. Phys.53, 397–408 (1977).
26
Y.-M. Wang, Polar Plumes and the Solar Wind. Astrophys. J.435, L153 (1994).
27
S. Patsourakos, J.-C. Vial, Outflow velocity of interplume regions at the base of Polar Coronal Holes. Astron. Astrophys.359, L1–L4 (2000).
28
L. Teriaca, G. Poletto, M. Romoli, D. A. Biesecker, The Nascent Solar Wind: Origin and Acceleration. Astrophys. J.588, 566–577 (2003).
29
N. Fargette, B. Lavraud, A. P. Rouillard, V. Réville, T. Dudok De Wit, C. Froment, J. S. Halekas, T. D. Phan, D. M. Malaspina, S. D. Bale, J. C. Kasper, P. Louarn, A. W. Case, K. E. Korreck, D. E. Larson, M. Pulupa, M. L. Stevens, P. L. Whittlesey, M. Berthomier, Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophys. J.919, 96 (2021).
30
P. Rochus, F. Auchère, D. Berghmans, L. Harra, W. Schmutz, U. Schühle, P. Addison, T. Appourchaux, R. Aznar Cuadrado, D. Baker, J. Barbay, D. Bates, A. BenMoussa, M. Bergmann, C. Beurthe, B. Borgo, K. Bonte, M. Bouzit, L. Bradley, V. Büchel, E. Buchlin, J. Büchner, F. Cabé, L. Cadiergues, M. Chaigneau, B. Chares, C. Choque Cortez, P. Coker, M. Condamin, S. Coumar, W. Curdt, J. Cutler, D. Davies, G. Davison, J.-M. Defise, G. Del Zanna, F. Delmotte, V. Delouille, L. Dolla, C. Dumesnil, F. Dürig, R. Enge, S. François, J.-J. Fourmond, J.-M. Gillis, B. Giordanengo, S. Gissot, L. M. Green, N. Guerreiro, A. Guilbaud, M. Gyo, M. Haberreiter, A. Hafiz, M. Hailey, J.-P. Halain, J. Hansotte, C. Hecquet, K. Heerlein, M.-L. Hellin, S. Hemsley, A. Hermans, V. Hervier, J.-F. Hochedez, Y. Houbrechts, K. Ihsan, L. Jacques, A. Jérôme, J. Jones, M. Kahle, T. Kennedy, M. Klaproth, M. Kolleck, S. Koller, E. Kotsialos, E. Kraaikamp, P. Langer, A. Lawrenson, J.-C. Le Clech’, C. Lenaerts, S. Liebecq, D. Linder, D. M. Long, B. Mampaey, D. Markiewicz-Innes, B. Marquet, E. Marsch, S. Matthews, E. Mazy, A. Mazzoli, S. Meining, E. Meltchakov, R. Mercier, S. Meyer, M. Monecke, F. Monfort, G. Morinaud, F. Moron, L. Mountney, R. Müller, B. Nicula, S. Parenti, H. Peter, D. Pfiffner, A. Philippon, I. Phillips, J.-Y. Plesseria, E. Pylyser, F. Rabecki, M.-F. Ravet-Krill, J. Rebellato, E. Renotte, L. Rodriguez, S. Roose, J. Rosin, L. Rossi, P. Roth, F. Rouesnel, M. Roulliay, A. Rousseau, K. Ruane, J. Scanlan, P. Schlatter, D. B. Seaton, K. Silliman, S. Smit, P. J. Smith, S. K. Solanki, M. Spescha, A. Spencer, K. Stegen, Y. Stockman, N. Szwec, C. Tamiatto, J. Tandy, L. Teriaca, C. Theobald, I. Tychon, L. van Driel-Gesztelyi, C. Verbeeck, J.-C. Vial, S. Werner, M. J. West, D. Westwood, T. Wiegelmann, G. Willis, B. Winter, A. Zerr, X. Zhang, A. N. Zhukov, The Solar Orbiter EUI instrument: The Extreme Ultraviolet Imager. Astron. Astrophys.642, A8 (2020).
31
D. Müller, O. C. St. Cyr, I. Zouganelis, H. R. Gilbert, R. Marsden, T. Nieves-Chinchilla, E. Antonucci, F. Auchère, D. Berghmans, T. S. Horbury, R. A. Howard, S. Krucker, M. Maksimovic, C. J. Owen, P. Rochus, J. Rodriguez-Pacheco, M. Romoli, S. K. Solanki, R. Bruno, M. Carlsson, A. Fludra, L. Harra, D. M. Hassler, S. Livi, P. Louarn, H. Peter, U. Schühle, L. Teriaca, J. C. del Toro Iniesta, R. F. Wimmer-Schweingruber, E. Marsch, M. Velli, A. De Groof, A. Walsh, D. Williams, The Solar Orbiter mission: Science overview. Astron. Astrophys.642, A1 (2020).
32
Materials and methods are available as supplementary materials.
33
F. Moreno-Insertis, K. Galsgaard, I. Ugarte-Urra, Jets in Coronal Holes: Hinode Observations and Three-dimensional Computer Modeling. Astrophys. J.673, L211–L214 (2008).
34
K. Shibata, T. Nakamura, T. Matsumoto, K. Otsuji, T. J. Okamoto, N. Nishizuka, T. Kawate, H. Watanabe, S. Nagata, S. Ueno, R. Kitai, S. Nozawa, S. Tsuneta, Y. Suematsu, K. Ichimoto, T. Shimizu, Y. Katsukawa, T. D. Tarbell, T. E. Berger, B. W. Lites, R. A. Shine, A. M. Title, Chromospheric anemone jets as evidence of ubiquitous reconnection. Science318, 1591–1594 (2007).
35
A. C. Sterling, R. L. Moore, D. A. Falconer, M. Adams, Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature523, 437–440 (2015).
36
S. Mandal, L. P. Chitta, H. Peter, S. K. Solanki, R. A. Cuadrado, L. Teriaca, U. Schühle, D. Berghmans, F. Auchère, A highly dynamic small-scale jet in a polar coronal hole. Astron. Astrophys.664, A28 (2022).
37
L. P. Chitta, A. R. C. Sukarmadji, L. Rouppe van der Voort, H. Peter, Energetics of magnetic transients in a solar active region plage. Astron. Astrophys.623, A176 (2019).
38
L. D. Xia, E. Marsch, W. Curdt, On the outflow in an equatorial coronal hole. Astron. Astrophys.399, L5–L9 (2003).
39
G. L. Withbroe, The Temperature Structure, Mass, and Energy Flow in the Corona and Inner Solar Wind. Astrophys. J.325, 442 (1988).
40
E. N. Parker, Nanoflares and the Solar X-Ray Corona. Astrophys. J.330, 474 (1988).
41
K. L. Harvey, F. Recely, Polar Coronal Holes During Cycles 22 and 23. Sol. Phys.211, 31–52 (2002).
42
T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E. E. Deluca, L. L. Lundquist, S. Tsuneta, L. K. Harra, Y. Katsukawa, M. Kubo, H. Hara, K. Matsuzaki, M. Shimojo, J. A. Bookbinder, L. Golub, K. E. Korreck, Y. Su, K. Shibasaki, T. Shimizu, I. Nakatani, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science318, 1585–1588 (2007).
43
G. A. Doschek, J. T. Mariska, H. P. Warren, C. M. Brown, J. L. Culhane, H. Hara, T. Watanabe, P. R. Young, H. E. Mason, Nonthermal Velocities in Solar Active Regions Observed with the Extreme-Ultraviolet Imaging Spectrometer on Hinode. Astrophys. J.667, L109–L112 (2007).
44
L. K. Harra, T. Sakao, C. H. Mandrini, H. Hara, S. Imada, P. R. Young, L. van Driel-Gesztelyi, D. Baker, Outflows at the Edges of Active Regions: Contribution to Solar Wind Formation?Astrophys. J.676, L147–L150 (2008).
45
D. H. Brooks, L. Harra, S. D. Bale, K. Barczynski, C. Mandrini, V. Polito, H. P. Warren, The Formation and Lifetime of Outflows in a Solar Active Region. Astrophys. J.917, 25 (2021).
46
Y.-M. Wang, in Cool Stars, Stellar Systems, and the Sun, R. A. Donahue, J. A. Bookbinder, Eds., vol. 154 of Astronomical Society of the Pacific Conference Series (1998), pp. 131–152.
47
S. Parhi, S. T. Suess, M. Sulkanen, Can Kelvin-Helmholtz instabilities of jet-like structures and plumes cause solar wind fluctuations at 1 AU? J. Geophys. Res.104, 14781–14787 (1999).
48
J. Andries, M. Goossens, Kelvin-Helmholtz instabilities and resonant flow instabilities for a coronal plume model with plasma pressure. Astron. Astrophys.368, 1083–1094 (2001).
49
Th. Roudier, R. Muller, Structure of the solar granulation. Sol. Phys.107, 11–26 (1986).
50
G. W. Simon, N. O. Weiss, Supergranules and the Hydrogen Convection Zone. Z. Astrophys.69, 435–450 (1968).
51
B. Mampaey, F. Verbeeck, K. Stegen, E. Kraaikamp, S. Gissot, F. Auchere, D. Berghmans, SolO/EUI Data Release 5.0 2022-04 (Royal Observatory of Belgium, 2022); https://doi.org/10.24414/2qfw-tr95.
52
I. Zouganelis, A. De Groof, A. P. Walsh, D. R. Williams, D. Müller, O. C. St Cyr, F. Auchère, D. Berghmans, A. Fludra, T. S. Horbury, R. A. Howard, S. Krucker, M. Maksimovic, C. J. Owen, J. Rodríguez-Pacheco, M. Romoli, S. K. Solanki, C. Watson, L. Sanchez, J. Lefort, P. Osuna, H. R. Gilbert, T. Nieves-Chinchilla, L. Abbo, O. Alexandrova, A. Anastasiadis, V. Andretta, E. Antonucci, T. Appourchaux, A. Aran, C. N. Arge, G. Aulanier, D. Baker, S. D. Bale, M. Battaglia, L. Bellot Rubio, A. Bemporad, M. Berthomier, K. Bocchialini, X. Bonnin, A. S. Brun, R. Bruno, E. Buchlin, J. Büchner, R. Bucik, F. Carcaboso, R. Carr, I. Carrasco-Blázquez, B. Cecconi, I. Cernuda Cangas, C. H. K. Chen, L. P. Chitta, T. Chust, K. Dalmasse, R. D’Amicis, V. Da Deppo, R. De Marco, S. Dolei, L. Dolla, T. Dudok de Wit, L. van Driel-Gesztelyi, J. P. Eastwood, F. Espinosa Lara, L. Etesi, A. Fedorov, F. Félix-Redondo, S. Fineschi, B. Fleck, D. Fontaine, N. J. Fox, A. Gandorfer, V. Génot, M. K. Georgoulis, S. Gissot, A. Giunta, L. Gizon, R. Gómez-Herrero, C. Gontikakis, G. Graham, L. Green, T. Grundy, M. Haberreiter, L. K. Harra, D. M. Hassler, J. Hirzberger, G. C. Ho, G. Hurford, D. Innes, K. Issautier, A. W. James, N. Janitzek, M. Janvier, N. Jeffrey, J. Jenkins, Y. Khotyaintsev, K.-L. Klein, E. P. Kontar, I. Kontogiannis, C. Krafft, V. Krasnoselskikh, M. Kretzschmar, N. Labrosse, A. Lagg, F. Landini, B. Lavraud, I. Leon, S. T. Lepri, G. R. Lewis, P. Liewer, J. Linker, S. Livi, D. M. Long, P. Louarn, O. Malandraki, S. Maloney, V. Martinez-Pillet, M. Martinovic, A. Masson, S. Matthews, L. Matteini, N. Meyer-Vernet, K. Moraitis, R. J. Morton, S. Musset, G. Nicolaou, A. Nindos, H. O’Brien, D. Orozco Suarez, M. Owens, M. Pancrazzi, A. Papaioannou, S. Parenti, E. Pariat, S. Patsourakos, D. Perrone, H. Peter, R. F. Pinto, C. Plainaki, D. Plettemeier, S. P. Plunkett, J. M. Raines, N. Raouafi, H. Reid, A. Retino, L. Rezeau, P. Rochus, L. Rodriguez, L. Rodriguez-Garcia, M. Roth, A. P. Rouillard, F. Sahraoui, C. Sasso, J. Schou, U. Schühle, L. Sorriso-Valvo, J. Soucek, D. Spadaro, M. Stangalini, D. Stansby, M. Steller, A. Strugarek, Š. Štverák, R. Susino, D. Telloni, C. Terasa, L. Teriaca, S. Toledo-Redondo, J. C. del Toro Iniesta, G. Tsiropoula, A. Tsounis, K. Tziotziou, F. Valentini, A. Vaivads, A. Vecchio, M. Velli, C. Verbeeck, A. Verdini, D. Verscharen, N. Vilmer, A. Vourlidas, R. Wicks, R. F. Wimmer-Schweingruber, T. Wiegelmann, P. R. Young, A. N. Zhukov, The Solar Orbiter Science Activity Plan: Translating solar and heliospheric physics questions into action. Astron. Astrophys.642, A3 (2020).
53
L. P. Chitta, H. Peter, S. Parenti, D. Berghmans, F. Auchère, S. K. Solanki, R. Aznar Cuadrado, U. Schühle, L. Teriaca, S. Mandal, K. Barczynski, É. Buchlin, L. Harra, E. Kraaikamp, D. M. Long, L. Rodriguez, C. Schwanitz, P. J. Smith, C. Verbeeck, A. N. Zhukov, W. Liu, M. C. M. Cheung, Solar coronal heating from small-scale magnetic braids. Astron. Astrophys.667, A166 (2022).
54
C. B. Markwardt, in Astronomical Data Analysis Software and Systems XVIII, D. A. Bohlender, D. Durand, P. Dowler, Eds., vol. 411 of Astronomical Society of the Pacific Conference Series (2009), pp. 251–254.
55
S. Gissot, F. Aucháre, D. Berghmans, B. Giordanengo, A. BenMoussa, J. Rebellato, L. Harra, D. Long, P. Rochus, U. Schühle, R. Aznar Cuadrado, F. Delmotte, C. Dumesnil, A. Gottwald, J.-P. Halain, K. Heerlein, M.-L. Hellin, A. Hermans, L. Jacques, E. Kraaikamp, R. Mercier, P. Rochus, P. J. Smith, L. Teriaca, C. Verbeeck, Initial radiometric calibration of the High-Resolution EUV Imager (HRIEUV) of the Extreme Ultraviolet Imager (EUI) instrument onboard Solar Orbiter. arXiv:2307.14182 [astro-ph.SR] (2023).
56
J.-L. Starck, F. Murtagh, Image restoration with noise suppression using the wavelet transform. Astron. Astrophys.288, 342–348 (1994).
57
G. A. Doschek, H. P. Warren, J. M. Laming, J. T. Mariska, K. Wilhelm, P. Lemaire, U. Schühle, T. G. Moran, Electron Densities in the Solar Polar Coronal Holes from Density-Sensitive Line Ratios of Si VIII and S X. Astrophys. J. Lett.482, L109–L112 (1997).
58
K. Wilhelm, Solar coronal-hole plasma densities and temperatures. Astron. Astrophys.455, 697–708 (2006).
59
H. N. Smitha, L. S. Anusha, S. K. Solanki, T. L. Riethmüller, Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data. Astrophys. J. Suppl. Ser.229, 17 (2017).
60
L. P. Chitta, H. Peter, S. K. Solanki, Nature of the energy source powering solar coronal loops driven by nanoflares. Astron. Astrophys.615, L9 (2018).
61
E. R. Priest, L. P. Chitta, P. Syntelis, A Cancellation Nanoflare Model for Solar Chromospheric and Coronal Heating. Astrophys. J. Lett.862, L24 (2018).
62
V. Upendran, D. Tripathi, On the Formation of Solar Wind and Switchbacks, and Quiet Sun Heating. Astrophys. J.926, 138 (2022).
63
S. R. Cranmer, Low-frequency Alfvén Waves Produced by Magnetic Reconnection in the Sun’s Magnetic Carpet. Astrophys. J.862, 6 (2018).
64
E. Marsch, Kinetic Physics of the Solar Corona and Solar Wind. Living Rev. Sol. Phys.3, 1 (2006).
65
A. R. Paraschiv, A. Bemporad, A. C. Sterling, Physical properties of solar polar jets: A statistical study with Hinode XRT data. Astron. Astrophys.579, A96 (2015).
66
L. P. Chitta, D. B. Seaton, C. Downs, C. E. DeForest, A. K. Higginson, Direct observations of a complex coronal web driving highly structured slow solar wind. Nat. Astron.7, 133–141 (2023).
67
G. R. Gupta, L. Teriaca, E. Marsch, S. K. Solanki, D. Banerjee, Spectroscopic observations of propagating disturbances in a polar coronal hole: Evidence of slow magneto-acoustic waves. Astron. Astrophys.546, A93 (2012).
68
S. D. Bale, J. F. Drake, M. D. McManus, M. I. Desai, S. T. Badman, D. E. Larson, M. Swisdak, T. S. Horbury, N. E. Raouafi, T. Phan, M. Velli, D. J. McComas, C. M. S. Cohen, D. Mitchell, O. Panasenco, J. C. Kasper, Interchange reconnection as the source of the fast solar wind within coronal holes. Nature618, 252–256 (2023).
69
T. Van Doorsselaere, N. Wardle, G. Del Zanna, K. Jansari, E. Verwichte, V. M. Nakariakov, The First Measurement of the Adiabatic Index in the Solar Corona Using Time-dependent Spectroscopy of Hinode/EIS Observations. Astrophys. J. Lett.727, L32 (2011).
70
J. W. Cirtain, L. Golub, L. Lundquist, A. van Ballegooijen, A. Savcheva, M. Shimojo, E. Deluca, S. Tsuneta, T. Sakao, K. Reeves, M. Weber, R. Kano, N. Narukage, K. Shibasaki, Evidence for Alfvén waves in solar x-ray jets. Science318, 1580–1582 (2007).
71
U. V. Möstl, M. Temmer, A. M. Veronig, The Kelvin-Helmholtz Instability at Coronal Mass Ejection Boundaries in the Solar Corona: Observations and 2.5D MHD Simulations. Astrophys. J. Lett.766, L12 (2013).
72
L. P. Chitta, E. R. Priest, X. Cheng, From Formation to Disruption: Observing the Multiphase Evolution of a Solar Flare Current Sheet. Astrophys. J.911, 133 (2021).
73
X. Li, J. Zhang, S. Yang, Y. Hou, R. Erdélyi, Observing Kelvin-Helmholtz instability in solar blowout jet. Sci. Rep.8, 8136 (2018).
74
P. Antolin, T. J. Okamoto, B. De Pontieu, H. Uitenbroek, T. Van Doorsselaere, T. Yokoyama, Resonant Absorption of Transverse Oscillations and Associated Heating in a Solar Prominence. II. Numerical Aspects. Astrophys. J.809, 72 (2015).
75
T. A. Howson, I. De Moortel, P. Antolin, Energetics of the Kelvin-Helmholtz instability induced by transverse waves in twisted coronal loops. Astron. Astrophys.607, A77 (2017).
No comments:
Post a Comment